Convergent genetic programs regulate similarities and differences between related motor neuron classes in Caenorhabditis elegans.
نویسندگان
چکیده
How do genetic programs create features common to a specific cell or tissue type while generating modifications necessary for functional diversification? We have addressed this question using the nematode Caenorhabditis elegans. The dorsal D (DD) and ventral D (VD) motorneurons (mns), referred to collectively as the D mns, compose a cross-inhibitory network that contributes to the animal's sinuous locomotion. The D mns share a number of structural and functional features, but are distinguished from one another by their synaptic patterns and the expression of a neuropeptide gene. Our findings suggest that the similarities and differences are generated at the transcriptional level. UNC-30 contains a homeodomain and activates structural and functional genes expressed in both classes. UNC-55 is a nuclear receptor expressed in the VD mns that is necessary for generating features that distinguish the two classes of D mns from one another. In unc-55 mutants, the VD mns adopt the DD mn synaptic pattern and peptide expression profile. Conversely, ectopic expression of unc-55 in the DD mns causes them to adopt VD mn features. The promoter of the neuropeptide gene expressed in the DD mns contains putative binding sites for both UNC-30 and UNC-55; alteration of these sites suggests that UNC-55 represses the ability of UNC-30 to activate a subset of genes that are expressed in the DD mns but not in the VD mns. Thus UNC-55 acts as a switch for the features that distinguish these two functionally related classes of mns.
منابع مشابه
UNC-55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans.
Loss of UNC-55 function in the nematode Caenorhabditis elegans causes one motor neuron class, the ventral D (VD) motor neurons, to adopt the synaptic pattern of another motor neuron class, the dorsal D (DD) motor neurons. Here we show that unc-55 encodes a member of the nuclear hormone receptor gene family that is similar to the vertebrate chicken ovalbumin upstream promoter transcription facto...
متن کاملDistributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans.
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by ...
متن کاملDopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein.
Overexpression of human alpha-synuclein in model systems, including cultured neurons, drosophila and mice, leads to biochemical and pathological changes that mimic synucleopathies including Parkinson's disease. We have overexpressed both wild-type (WT) and mutant alanine53-->threonine (A53T) human alpha-synuclein by transgenic injection into Caenorhabditis elegans. Motor deficits were observed ...
متن کاملA genetic screen for neurite outgrowth mutants in Caenorhabditis elegans reveals a new function for the F-box ubiquitin ligase component LIN-23.
Axon pathfinding and target recognition are highly dynamic and tightly regulated cellular processes. One of the mechanisms involved in regulating protein activity levels during axonal and synaptic development is protein ubiquitination. We describe here the isolation of several Caenorhabditis elegans mutants, termed eno (ectopic/erratic neurite outgrowth) mutants, that display defects in axon ou...
متن کاملVAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans
The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 280 2 شماره
صفحات -
تاریخ انتشار 2005